
Searching Stateful Spaces

Optimizing Search Functions
 Optimization is a search
 Search is a function
 Function is a subject of optimization
 Optimization is a search…

The text is an attempt to think through this (seemingly circular) chain of declarations. Let’s now take it
one step at a time.

Any optimization problem can be expressed in terms of searching. A brute force
searches meticulously traverse the entire search space while trying to visit each and
every point only once. A blind search starts from an arbitrary point, and picks the next
one at random. It’ll stop when target is reached, based on a given definition of what
the (optimization) target is, or what it may be. That is, unless it runs out of time first, of
course...

Search logic, on the other hand, can always be interpreted as a function that takes the following input:

A) current position in the space, plus
B) possibly some kind of measure of a distance, or a direction that would lead us closer to the target,

and
C) optionally, the previous search step, or the entire sequence of previous steps, or a part of thereof –

translated into:
D) the next step, resulting in a new position

Note that A and C imply a definition of search-as-a-function problem domain – not to be confused with
the domain of the function that is being optimized or learned in the first place. Functions (and that is the
final argument in the optimization  search  function sequence) – do map domains. A function takes
an input defined on its input domain, and maps it onto its output (the item D above).

Being a function, the search itself can be viewed as an optimization target in the separate problem space
that contains all possible searches (i.e., search functions), including blind-random and brute-force.
Important distinction is that the item B above – the measure of a distance, or a direction leading closer
to the search target – is generally tough to figure out. But more on that later.

The rest of this paper is structured as follows:

Optimizing Search Functions...1
A Hybrid Example..2
Searching Stateful Spaces..3
NFL, and The Apparent Futility of Asking Big Questions..5

ℝ2  ℝ2 illustration..6
Meta-learning..7
Super RNN...9

1

https://en.wikipedia.org/wiki/Domain_of_a_function

A Hybrid Example
There is, for instance, a popular hybrid-storage case comprised of a storage initiator connected to two or
more storage targets with different capabilities. A conceptual SSD target (Fig. 1), although limited in
capacity, features superb performance. HDD target, on the other hand, would deliver abundant,
practically free, capacity, albeit coupled with below-average performance:

Fig. 1. Hybrid storage (pattern)

The Fig. 1 pattern is clearly motivated by the idea of combining best-of-both as far as $/IOPS and $/GB.
Given comparable implementations and hardware resources, the resulting performance will depend on
the numbers of unacknowledged IOs in flight between the initiator and the respective targets. But only
in part.

The second, slightly less obvious part of the hybrid “performance equation” is defined by the distributed
internal state of the [initiator + targets] system – a state that in turn is a function of the SSD target’s
remaining capacity at a given point in time, and the rate at which this capacity is getting consumed. And,
possibly, the second derivative of this rate as well.

In its most distilled and basic realization, and in the presence of only two storage targets (Fig. 1), the
system performance function would map ℝ2  ℝ2 , with two per-target queue depths on the input side
of the mapping (denoted as x1 and x2 on the picture), and two performance numbers y1 and y2 on the
output (for instance, SSD and HDD respective IOPS).

Generally, when there’s a distributed system that executes IO requests, there will be an Rn  Rm
function Y(t) = F(X(t), S(t)) “computing” the system’s runtime performance, where:

 X(t) is the input that carries various IO parameters (e.g., per-target queue depths, I/O sizes,
spatial and temporal distributions, synchronicity, etc.)

 S(t) is the internal state that depends on the system’s resources and/or history of previous
inputs and/or previous state transitions

2

Searching Stateful Spaces
When the time’s quantized, the Yt = F(Xt, St-1) notation indicates a time-stepped (t = 0, 1, 2, …)
progression of a system through its multi-dimensional space of states, with each state St being defined
by the previous state(s) and the current input: Yt = F(Xt, St-1), whereSt = G(Xt, St-1)
Generally, this type of nonlinear and not necessarily differentiable F() and G() behaviors can be learned
(and therefore, optimized) through two separate machine learning (ML) techniques:

 Reinforcement Learning (RL)
 Recurrent Neural Network (RNN)

The two are ostensibly different – but also similar in so many ways. Reinforcement Learning (with its TD
and Q-learning model-free algorithms) looks at the world of stateful dynamic systems through a prism of
agents (that act), and an environment that is, effectively, everything else other than the agents:

Fig. 2. RL agent  environment diagram

In particular, the environment responds to an agent’s actions by generating rewards which in turn
provide positive or negative feedback to the agent, to modify its own runtime behavior (a.k.a. policy) via
a so-called learning update (Fig. 2).

Recurrent neural nets, on the other hand, are often designated as artificial neural networks with
memory. This memory, denoted as ht-1, gets conflated ( sign on Fig. 2) with the next environment-

generated input xt, to produce a new output (not shown) and a new internal state ht:

Fig. 3. Recurrent “superposition”

Unlike RL type methods (where rewards must be explicitly defined), neural networks get rewarded or,
rather, penalized via changes in the values of associated cost functions and through the sci-fi inspired
mechanism called back propagation through time (BPTT). The latter provides learning updates (Fig. 2) to
the RNN’s numerous internal parameters (aka, weights).

3

https://en.wikipedia.org/wiki/Backpropagation_through_time
https://g.twimg.com/blog/blog/image/systemDiagram.png
https://g.twimg.com/blog/blog/image/systemDiagram.png
https://g.twimg.com/blog/blog/image/systemDiagram.png
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Reinforcement_learning

Here’s a quick summary that puts two respective terminologies in perspective, side by side:

Reinforcement Learning Recurrent Neural Network

Learning update BPTT
State Network memory

(activations of the RNN’s hidden layers at previous timestamps)

Action Output
Reward (-) Cost

for instance, Mean Squared Error (MSE)

Table 1. RL vs RNN terminologies

What’s important is the statefulness of both machine-learning techniques, as well as their respective
algorithmic ability to translate environmental feedback into internal operation-improving changes –
learning updates. As time goes by, the cumulative effect of those (very special type) searches translates
into lesser cost (for RNN) and larger cumulative rewards (for RL), respectively.

Searching for usable RNN
Any existing (and future) machine learning technique that can be utilized to learn a given unknown
function F() will entail:

1) Using existing ML framework, or building a new one (done)
2) Optionally, modeling and simulating a stateful system that generates realistic performance

numbers (done)
3) Benchmarking, logging, and otherwise collecting data
4) Writing scripts, parsing the logs, cleaning and normalizing the data, and more .

Some of these items are heavy-duty tasks, and investments. For some of these items we would probably
want to have an assurance that the learning-model part (for instance, RNN’s parameters and its
architecture) was done right. Let’s step back, therefore, and take a look at RNNs from a configurability
perspective.

RNNs are famous for providing unbounded freedom, in terms of the size and numbers of hidden layers,
the amount of past they can store, and the degree to which this past can influence the present – and
therefore, the future.

Choosing an optimal machine-learning architecture, its hyper-parameters, and its other numerous
tunables becomes, therefore, a non-trivial task in and of itself. Especially in multi-dimensional and
stateful (translation: non-trivial real-life) cases.

But how to choose anything when we are facing myriad possibilities? The one answer that inevitably
comes first is – trial and error (which would be a rather limited version of blind search). That is not a
good answer, though.

4

https://en.wikipedia.org/wiki/Hyperparameter_optimization
http://cacm.acm.org/system/assets/0001/3678/rp-overview.jpg
http://cacm.acm.org/system/assets/0001/3678/rp-overview.jpg
https://github.com/hqr/surge
https://github.com/hqr/gorann
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Backpropagation_through_time

Other than a mind-blowing cardinality of the associated search domain, RNNs feature the so-
called vanishing gradient as well as exploding gradient problems – two sides of the same “coin”
rooted in the chain rule for computing derivatives of the composition of functions. This is
because, having time dimension, RNNs are particularly predisposed to generate lengthy
functional compositions.

In the space of all RNNs that can be used for a given stateful F() – what could be the search strategy that
finds the optimal one? Notice that in presence of any real-time or close to real-time requirements (e.g.,
when trying to optimize performance of a hybrid-storage system, Fig. 1), the difference between fast and
slow RNN is a difference between usable and unusable.

That is the question. Is there a methodology for searching the domain of all (or at least some) possible
RNNs? Anything?

NFL, and The Apparent Futility of Asking Big Questions
Optimization is a search. Search is a function that must itself be optimizable.

Given nonlinear ℝn  ℝm transformation that must be learned, and given defined limits on
size/complexity of neural networks used for this learning (e.g., maximum depth of the network and
maximum size of its hidden layers) – is there a way to predict that a network that is substantially below
permitted maximums will consistently perform better? That it’ll converge orders of magnitude faster,
with better cost/loss results by orders of magnitude?

Since artificial networks were inspired by natural networks, it is only natural that the language
itself (“neurons”, “synapses”, etc.) motivates further inferences.

For instance, the question is whether RNNs could possibly “rehabilitate” themselves when
running with fewer memory-based neuron connections. How few would still be enough? And at
which point during the training would the remaining part of RNN’s “brain” sufficiently develop
itself to, in effect, overcompensate?

Colorful connotations aside, at least some trade-offs are inevitable – trade-offs between the speed, the
precision, and the applicability of learning models. In other words, there will be absolutely No Free
Lunch (NFL). The 1997 NFL theorem states that for the problem of optimizing an arbitrary ℝ  ℝ
function, no algorithm performs better than a blind search. Meaning: a method of optimizing across the
board simply does not exist. The same, of course, applies to higher dimensions.

Which is why it would be rather pointless to look for a methodology of searching through the space of
applicable neural networks (for instance), hoping to find the best fit for an arbitrary Yt = F(Xt, St-1).

Which is also why it would make total sense to identify, and then resolve, non-trivial special cases – in
particular, the case of all RNNs that are limited in depth (layer-wise and history-wise) and have no more
than a given maximum number of neurons (aka units) per layer.

5

https://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization
https://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization
https://en.wikipedia.org/wiki/No_free_lunch_in_search_and_optimization
https://en.wikipedia.org/wiki/Bio-inspired_computing
https://en.wikipedia.org/wiki/Chain_rule
https://en.wikipedia.org/wiki/Exploding_gradient_problem
https://en.wikipedia.org/wiki/Vanishing_gradient_problem

This is because the common wisdom tells us: when searching, the cardinality of the search domain is the
first thing to try to reduce, if possible…ℝ2  ℝ2 illustration
This section is a pure illustration, motivated in part by the hybrid-storage example in Fig. 1. As stated, the
runtime function in question would (minimally) map ℝ2  ℝ2 and have a top-level requirement of being
quite stateful and resolutely nonlinear (better yet, non-polynomial). Like, for instance, the following two
examples:

and:

Fig. 4. Two stateful ℝ2  ℝ2 examples

For the sake of brevity, the state “component” of a system-generated output above is folded into the Yt
output – via hyperbolic sine/cosine in one case, and conventional sine/cosine functions in another, with
subscript [iprev] corresponding to the previous instant of time (t - 1).

Source code and running instructions for these examples, as well as ANN/RNN implementation,
can be found on github.

Note also that all recurrent networks in this paper are variations of Elman RNN.

The Fig. 5 graphics compares (2, 4, 4, 2) neural networks used to learn the formulas above – RNNs with
2-dimensional inputs/outputs and 2 hidden layers, each comprised of 4 units. Height of the bars on Fig. 5
reflects MSE of separate testing examples after running each of the respected networks through 5
million training iterations. Notice that in both cases the memoryless Artificial Neural Network (ANN)
does not converge.

Fig. 5. Neural networks: MSE in comparison

All the rest of the X-axis labels denote recurrent networks of different degrees of connectedness
between the past and the present. For instance, “limited-1” RNN restricts feed-forward pass (and

6

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Recurrent_neural_network#Elman_networks_and_Jordan_networks
https://github.com/hqr/gorann/tree/bloglimrnn

therefore, back propagation pass) to a single neuron connection, while “unrolled” implies full (past 
present) connectivity between all hidden layers (Fig. 6).

Finally, the configuration labeled “naïve” comes with a single (t - 1) layer that backs up the very first
hidden layer in the neural network.

Fig. 6. RNNs: “limited-1” (left) and “unrolled” (right)

This section shows just one experiment in a (totally non-representative) series that included networks of
up to 8 hidden layers, up to 128 hidden units in a layer, and a variety of stateful time-series F(Xt, St-1),
such as, for instance, those shown on Fig. 4.

One quick observation: my attempts to identify (or somehow guess) best-performing RNN prior
to running benchmarks have been off the mark most of the time...

Meta-learning
When under-training, an RNN undergoes a sequence of state transitions: Wh(t-1)  Wh(t) and Wx(t-1)  Wx(t)
where Wh is combination of all “recurrent” weights (associated with arrows shown on Fig. 6), and Wx –
the weights of all non-recurrent hidden units/neurons, or, more precisely, their connections. The Fig. 3,
therefore, can be slightly modified as follows (Fig. 7):

Fig. 7. Recurrent superposition: two sets of weights

Given a fixed network architecture, fixed hyper-parameters and selected optimization algorithm, the

quest for an optimal RNN can be narrowed down to finding the optimal (Wh, Wx) pair that would yield
the best cost/loss for the original Yt = F(Xt, St-1), for all possible inputs (Xt, St-1). Since any search

7

https://github.com/hqr/gorann/blob/bloglimrnn/config.go#L22

process is a function that can in turn be learned and optimized, the very first (and likely very dumb) idea

that comes to mind is – using (Wt-1, Wt) as training examples – for both Wh and Wx, or just one of
those sets of weights, or any subset of thereof.

In other words, we are talking meta-learning.

Meta-learning is defined as state of "being aware of and taking control of one’s own learning"
(Wikipedia).

The related machine-learning interpretation must sound like co-training of both a neural network, and
another neural network (the meta-learner) that is being trained by “watching” and “observing” the
former. This other neural network will, effectively, execute a search in the RNNs domain, by mapping a
given input RNN to a more and more optimized output, as far as the original stateful F() is concerned:

Fig. 6. Meta-learning

In this figure, the original RNN processes training mini-batches of (Xt, Yt) to generate Wh and Wx
updates. In parallel, the meta-learner (Fig. 6) is being fed pre- and post-update (Wt-1, Wt) pairs, to
utilize them as a separate training sequence in its own right.

After a few (or a few million) iterations the meta-learner could be, supposedly, short-circuited to start
generating RNN  RNN* in total autonomy (Fig. 7):

Fig. 7. Meta-learning short-circuited

A pair of fully connected hidden layers of size N adds precisely N2 new variables (aka, weights) into the

RNN-as-a-function. The O(N2) part gets further multiplied by the numbers of hidden layers as well as the
number of stored instances of their (the layers) past activations – a fact that strongly indicates that the
complexity of meta-learning can easily surpass the complexity of the original neural network.

Secondly – and this is much bigger problem – during the Fig. 6 process the meta-learner will be
inevitably “observing” and being trained upon the sub-optimal trajectory of the original trainee. It is
intuitively clear therefore, that the combined co-training results cannot include a better or version of this
trajectory.

8

https://en.wikipedia.org/wiki/Meta_learning

Super RNN
 Optimization is a search
 Search is a function
 Function is a subject of optimization...

Again, there must exist a way to search the domain of RNNs inversely defined by a given stateful Yt = F(Xt, St-1) transformation. A member of such domain would have an input layer, an output layer, a
bunch of hidden layers, and a recurrent state comprising previous hidden activations (Fig. 8):

Fig. 8. RNN in 3D

Instead of, as in the previous section, “fixing” RNN’s architecture, this time we enumerate the latter
across its possible dimensions:

 number of hidden layers, say: 2, 4, 8, …, 64
 size of a hidden layer: N, 2N, 4N (where N would be the size of the input layer)
 number of the recurrent layers
 type of the recurrent layer and number of its connections: “unrolled”, “limited-X”, “naive” (Fig. 5, 6)

Once enumerated, RNN architectures define a new input domain with a total size that will likely fall in a
range anywhere between 100 and 10 thousand (which must still be quite manageable). Fig. 9 shows a
new RNN (dubbed “super RNN”), with an input that consists of the (vectored) outputs of the RNNs
enumerated above (due to the space constraints, the picture shows only three of those):

Fig. 9. Super RNN

Question is, which super architecture would be optimal to perform the search?

To be continued...

9

	Optimizing Search Functions
	A Hybrid Example
	Searching Stateful Spaces
	NFL, and The Apparent Futility of Asking Big Questions
	ℝ2  ℝ2 illustration
	Meta-learning
	Super RNN

